
Automatic Differentiation of Tensor Operations

Contents

1 Introduction 2

2 Prerequisites 2

3 Computation Graphs 2
3.1 What is a Computation Graph? . 2
3.2 Abstract Computation Graph and the Chain Rule . 2
3.3 Multiple Paths and Gradient Accumulation . 3
3.4 Dynamic Computation Graphs . 3
3.5 A simple example . 4
3.6 A more complex example . 4
3.7 An example with tensor re-use . 5

4 Gradient Derivations for Tensor Operations 5
4.1 Addition & Subtraction . 5
4.2 Element–wise (Hadamard) Multiplication . 6
4.3 Sigmoid . 6
4.4 Scalar Multiplication . 7
4.5 Division . 7
4.6 Power . 8
4.7 Sum (Reduction) . 8
4.8 Mean (Reduction) . 9
4.9 Reshape . 9
4.10 Transpose . 10
4.11 Concatenation . 10
4.12 Matrix Multiplication . 11
4.13 ReLU . 13
4.14 Leaky ReLU . 13

5 Loss Functions 14
5.1 Defining a new loss is just composing tensors . 14
5.2 Gradients via automatic differentiation . 14
5.3 Example: Mean–Squared Error (MSE) . 14
5.4 Beyond MSE . 15

6 Layer Implementations 15
6.1 Dense (Fully Connected) . 15
6.2 Activation Layers . 16
6.3 Dropout . 16
6.4 Skip Connection (Residual) . 16

1

7 Loss Functions 16
7.1 Defining a new loss is just composing tensors . 16
7.2 Gradients via automatic differentiation . 17
7.3 Example: Mean–Squared Error (MSE) . 17
7.4 Beyond MSE . 17

1 Introduction

An overview of automatic differentiation (autograd), computational graphs, and the use of the chain rule to
propagate gradients backwards through a network of tensor operations.

2 Prerequisites

This document requires a working knowledge of several foundational topics in mathematics and computer
science. The key prerequisites are itemized below.

• Calculus: Proficiency in single and multi-variable calculus is assumed. A firm grasp of differentiation,
partial derivatives, and the chain rule is essential, as the chain rule is the mathematical basis for
backpropagation.

• Linear Algebra: The core data structures in neural networks are tensors. Familiarity with vec-
tors, matrices, and their fundamental operations—including matrix multiplication, transposition, and
element-wise products—is required.

• Programming: All code is implemented in Python with the NumPy library. Practical knowledge of
Python syntax and experience with NumPy for creating, indexing, and transforming arrays is necessary.
An understanding of NumPy’s broadcasting mechanism is also expected.

• Machine Learning Concepts: A conceptual understanding of the machine learning training process
provides essential context. This includes the definitions of a model, its parameters, a loss function,
and the role of gradient descent in minimizing that loss.

3 Computation Graphs

3.1 What is a Computation Graph?

A computation graph is a directed acyclic graph (DAG) whose circle nodes represent tensors Ti (stored
numeric values) and whose square nodes represent the elementary operations fj that transform one or more
tensors into a new tensor. Inputs appear as leaf nodes, intermediate tensors as interior nodes, and the final
output (often a loss) is the unique sink. Decomposing a complex function into such primitive steps enables
efficient forward evaluation and, crucially, the application of the chain rule for automatic differentiation on
the backward pass.

3.2 Abstract Computation Graph and the Chain Rule

T1

T2

f1 T3 f2 T4

2

Let T3 = f1(T1, T2) and T4 = f2(T3). By the multivariable chain rule the gradient of the result with
respect to each input factorises into local derivatives along the path:

∂T4

∂T1
=

∂T4

∂T3

∂T3

∂T1
,

∂T4

∂T2
=

∂T4

∂T3

∂T3

∂T2
.

More generally, for a chain of tensors T1→T2→ . . .→Tn we have

∂Tn

∂T1
=

n−1∏
k=1

∂Tk+1

∂Tk
.

Automatic differentiation exploits this property by traversing the graph in reverse (back-propagation), mul-
tiplying the local Jacobians encountered along every computational path.

3.3 Multiple Paths and Gradient Accumulation

Real networks often reuse the same tensor in several branches (skip connections, residual blocks, etc.). A
single source tensor may therefore reach the loss through multiple independent paths. The chain rule is
linear, so the overall gradient with respect to that tensor is the sum of the pathwise contributions.

More formally, let P(s, L) be the set of directed paths from a tensor Ts to the loss L. Then

∂L

∂Ts
=

∑
p∈P(s,L)

∏
(u→v)∈p

∂Tv

∂Tu
.

T1

f1 T2

f2 T3

f3 L

With T2 = f1(T1), T3 = f2(T1), L = f3(T2, T3) the gradient w.r.t. T1 splits into two terms:

∂L

∂T1
=

∂L

∂T2

∂T2

∂T1︸ ︷︷ ︸
upper path

+
∂L

∂T3

∂T3

∂T1︸ ︷︷ ︸
lower path

.

Each term is a product of local derivatives along its path; the final gradient is their sum. In matrix
form, modern autodiff systems accumulate this sum by adding the partial gradient coming back along every
incoming edge of a node during the backward sweep.

3.4 Dynamic Computation Graphs

Traditional ”static” frameworks (e.g. early TensorFlow, Theano) require users to build the entire compu-
tation graph symbolically before any data can flow through it. By contrast, dynamic computation graphs
are defined on–the–fly : the graph is constructed node–by–node as the forward pass executes native Python
code. Control–flow statements such as ‘if‘, ‘for‘, and ‘while‘ therefore influence the structure of the graph
that is recorded for that specific input.

3

Why dynamic graphs matter

• Variable–length sequences. Recurrent networks naturally loop over the time dimension; sequence
length T is data–dependent.

• Conditional computation. Mixture–of–experts and sparsely activated layers execute only a subset
of branches based on the input.

• Ease of debugging. Because graph construction follows normal execution, developers can insert
breakpoints or print statements anywhere in the model code.

Abstract example Suppose we unroll an RNN over a sequence of length T . At step k we create an output
tensor Tk using the same operation f but different data (each step has its own node):

Tk = f
(
Tk−1, Xk

)
, k = 1, . . . , T.

The dynamic graph for a single input sequence is therefore a chain of length T . Gradient back–propagation
follows the chain in reverse (Backprop through Time) and automatically stops at the earliest time step that
was actually executed.

T0 f T1 f . . . f TT

Because the graph can differ for every forward pass, the autodiff engine keeps only the nodes actually
executed, leading to memory savings for models with conditional branches.

3.5 A simple example

1. L = x+ y

x

y

+ L

Tensor Breakdown

Tensor Inputs Operation

x — —
y — —
L x, y +

3.6 A more complex example

2. L = x2 · y

x

y

(·)2 I1

× L

4

Tensor Breakdown

Tensor Inputs Operation

x — —
y — —
I1 x x2

L I1, y ×

3.7 An example with tensor re-use

3. L = (2x+ xy)2

x

y

×2 I1

× I2

+ I3 (·)2 L

Tensor Breakdown

Tensor Inputs Operation

x — —
y — —
I1 x ×2
I2 x, y ×
I3 I1, I2 +
L I3 x2

4 Gradient Derivations for Tensor Operations

In what follows, let R denote the result of an operation and X denote an input tensor. We derive ∂R/∂X
for each primitive operation implemented in tensor.py.

4.1 Addition & Subtraction

Let R = A+B with A,B ∈ Rd1×···×dk . During back-propagation we receive an upstream tensor G = ∂L/∂R
of identical shape.

Local derivatives Because addition acts elementwise,

∂Ri1...ik

∂Ai1...ik

= 1,
∂Ri1...ik

∂Bi1...ik

= 1.

Gradient rules Applying the chain rule elementwise gives

∂L

∂A
= G ,

∂L

∂B
= G .

5

If instead R = A−B, the derivative w.r.t. A is unchanged while B picks up a minus sign:

∂L

∂A
= G ,

∂L

∂B
= −G .

Simplified implementation

Upstream gradient: G (same shape as A and B)

dA = G # for addition and subtraction

dB = G # addition

dB = -G # subtraction

Broadcasting: if A or B were broadcast in the forward pass, sum G along the broadcast axes when
accumulating into that operand.

4.2 Element–wise (Hadamard) Multiplication

Let R = A ⊙ B where ”⊙” denotes elementwise (Hadamard) multiplication. Components satisfy Ri... =
Ai...Bi....

Local derivatives
∂Ri...

∂Ai...
= Bi...,

∂Ri...

∂Bi...
= Ai....

Gradient rules Given upstream G:

∂L

∂A
= G⊙B ,

∂L

∂B
= G⊙A .

Simplified implementation

dA = G * B # elementwise product

dB = G * A

4.3 Sigmoid

The sigmoid (logistic) activation is applied elementwise:

R = σ(X) =
1

1 + e−X
.

Let G = ∂L/∂R be the incoming gradient.

Local derivative A convenient identity is

σ′(x) = σ(x)
(
1− σ(x)

)
.

Thus elementwise
∂R

∂X
= R (1−R).

Gradient rule
∂L

∂X
= G⊙R⊙ (1−R) .

6

Simplified implementation

R is the forward-pass output sigma(X)

dX = G * R * (1 - R)

Numerical stability tip: clip X to a reasonable range (e.g. [−500, 500]) before calling e−X—see the
safeguard in sigmoid tensor.

4.4 Scalar Multiplication

Consider scaling a tensor by a constant scalar: R = cA where c ∈ R and A ∈ Rd1×···×dk . In most deep-
learning codebases c is a literal or a hyper-parameter and therefore does not require a gradient; nevertheless
we derive it for completeness.

Local derivatives Elementwise we have Ri... = cAi..., so

∂Ri...

∂Ai...
= c,

∂Ri...

∂c
= Ai....

Gradient w.r.t. the tensor A Let G = ∂L/∂R.

∂L

∂A
= c G .

This is simply a rescaling of the upstream gradient.

Gradient w.r.t. the scalar c (optional) Flattening all indices, the total derivative accumulates over
every element of A:

∂L

∂c
=

∑
i1,...,ik

Gi1...ik Ai1...ik = ⟨G,A⟩,

where ⟨·, ·⟩ denotes the Frobenius inner product.

Simplified implementation

Forward: R = c * A

Backward inputs: G (same shape as A)

dA = c * G # gradient for tensor

if requires_grad_c:

dc = np.sum(G * A) # gradient for scalar

The function scalar multiply tensor in tensor.py follows this rule, propagating gradients only to the
tensor argument because the scalar is treated as a constant.

4.5 Division

Let R = A/B denote elementwise division with A,B ∈ Rd1×···×dk and B containing no zeros. During the
backward pass we receive an upstream gradient G = ∂L/∂R of matching shape.

Local derivatives For each entry i (multi–index suppressed):

∂Ri

∂Ai
=

1

Bi
,

∂Ri

∂Bi
= −Ai

B2
i

.

7

Gradient rules
∂L

∂A
=

G

B
,

∂L

∂B
= −G⊙ A

B2
.

Simplified implementation

dA = G / B

dB = -G * A / (B ** 2)

If broadcasting occurred in the forward pass, sum the resulting gradients over broadcast axes before
adding them to the stored gradients, mirroring tensor divide in tensor.py.

4.6 Power

Consider raising each element of a tensor to a scalar exponent p: R = Ap with A ≥ 0 elementwise (to keep
derivatives real). The exponent p ∈ R is typically a constant.

Local derivative For each element i:
∂Ri

∂Ai
= pA p−1

i .

Gradient rule Given upstream G:

∂L

∂A
= G⊙

(
pAp−1

)
.

Optional gradient w.r.t. the exponent p If p were a learnable parameter we would also obtain

∂L

∂p
=

∑
i

Gi A
p
i lnAi.

This is seldom required in practice, so tensor pow only propagates to A.

Simplified implementation

dA = G * (p * (A ** (p - 1)))

If p requires grad:

dp = np.sum(G * (A ** p) * np.log(A))

4.7 Sum (Reduction)

Let R = sum(A) denote the sum of all elements in A ∈ Rd1×···×dk . The forward pass returns a scalar; during
back-propagation we receive an upstream scalar g = ∂L/∂R.

Local derivative Because every entry of A contributes linearly,

∂R

∂Ai1...ik

= 1 for all indices.

Gradient rule
∂L

∂A
= g 1 ,

where 1 is a tensor of ones with the same shape as A.

8

Simplified implementation

Forward: R = A.sum()

Backward: upstream scalar g

dA = g * np.ones_like(A)

This matches tensor sum in tensor.py.

4.8 Mean (Reduction)

The mean divides the sum by the number of elements N = d1 · · · dk:

R = mean(A) =
1

N

∑
i1,...,ik

Ai1...ik .

The upstream gradient is again a scalar g = ∂L/∂R.

Local derivative
∂R

∂Ai1...ik

=
1

N
.

Gradient rule
∂L

∂A
=

g

N
1 .

Simplified implementation

N = A.size

dA = g / N * np.ones_like(A)

tensor mean in tensor.py uses this exact scaling factor.

4.9 Reshape

Reshaping changes the view of the data without altering its values. Let

R = reshape(A, shapenew), A ∈ Rd1×···×dk , R ∈ Rs1×···×sm ,

where the total number of elements N = d1 · · · dk = s1 · · · sm is preserved. During back-propagation we
receive an upstream gradient G = ∂L/∂R having shape (s1, . . . , sm).

Local derivative Reshape is a data-layout operation: every output element corresponds one-to-one with
an input element. Hence

∂Rj

∂Ai
= δij ,

with i and j the flattened indices. The Jacobian is therefore the N ×N identity matrix.

Gradient rule Because the Jacobian is the identity, back-prop simply reinterprets the storage back into
the original shape:

∂L

∂A
= reshape(G, d1, . . . , dk) .

Simplified implementation

dA = G.reshape(A.shape)

This mirrors the behaviour of tensor reshape in tensor.py.

9

4.10 Transpose

For a matrix input let
R = A⊤, A ∈ Rm×n, R ∈ Rn×m.

Define G = ∂L/∂R with shape n×m.

Local derivatives Elementwise Rij = Aji, so

∂Rij

∂Apq
= δip δjq.

Gradient rule Applying the chain rule yields

∂L

∂A
= G⊤ .

Illustrative example Let

A =

[
a11 a12 a13
a21 a22 a23

]
, R = A⊤.

If the upstream gradient is

G =

g11 g12
g21 g22
g31 g32

 ,

then
∂L

∂A
= G⊤ =

[
g11 g21 g31
g12 g22 g32

]
,

matching the original shape of A.

Simplified implementation

dA = G.T

The function tensor transpose in tensor.py implements this exact rule.

4.11 Concatenation

Let R = concat(A, B; axis = k) join two tensors of identical rank along axis k. Suppose

A ∈ Rd1×···×d
(A)
k ×···×dm , B ∈ Rd1×···×d

(B)
k ×···×dm

so the result has size dk = d
(A)
k + d

(B)
k along that axis. During back-propagation we receive an upstream

gradient G = ∂L/∂R of the same shape as R.

Local derivatives Concatenation merely copies elements; the Jacobian is therefore a block-diagonal ma-
trix that routes each slice of G back to the corresponding input tensor. Concretely,

∂Ri

∂Ai
= 1 if the index lies in the A slice,

∂Ri

∂Bi
= 1 if the index lies in the B slice,

and zero otherwise.

10

Gradient rule Split G along axis k using the original sizes of A and B:

G(A), G(B) = split(G, [d
(A)
k], axis = k).

Then
∂L

∂A
= G(A) ,

∂L

∂B
= G(B) .

Illustrative example Consider two 2× 2 matrices concatenated row-wise (axis 0):

A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
.

The result is a 4× 2 matrix

R =

a11 a12
a21 a22
b11 b12
b21 b22

 .

If the upstream gradient is

G =

g11 g12
g21 g22
g31 g32
g41 g42

 ,

we simply slice it:
∂L

∂A
=

[
g11 g12
g21 g22

]
,

∂L

∂B
=

[
g31 g32
g41 g42

]
.

Simplified implementation

axis = k, size_a = A.shape[k]

G_a, G_b = np.split(G, [size_a], axis=k)

dA = G_a

dB = G_b

The autograd function tensor concat in tensor.py follows exactly this logic, splitting the upstream
gradient along the concatenation axis before accumulating it into the input tensors.

4.12 Matrix Multiplication

Let R = AB where A ∈ Rm×k and B ∈ Rk×n. Throughout this section L denotes the final scalar loss and
G = ∂L/∂R is the upstream gradient supplied by later nodes in the computational graph.

Forward pass

R = AB, Rij =

k∑
s=1

aisbsj .

Element–wise partial derivatives For a single entry rij we have

∂rij
∂apq

= bqj δip,
∂rij
∂bpq

= aip δqj ,

where δ is the Kronecker delta.

11

Kronecker delta The Kronecker delta δij is a discrete analogue of the identity function:

δij =

{
1 if i = j,

0 otherwise.

It ’picks out’ the terms where the indices coincide, ensuring that a partial derivative with respect to apq (or
bpq) only receives contributions from entries rij that actually depend on that element.

Illustrative example (2× 2 case) Let m = n = k = 2 and

A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
.

Then

R = AB =

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
.

One can directly verify the earlier formulas: for instance,

∂R11

∂a12
= b21,

∂R11

∂b21
= a12,

while derivatives with mismatched indices vanish because of the Kronecker delta.

Transpose as a shortcut for the full gradient Computing every partial derivative individually quickly
becomes tedious. Notice, however, that the summation

∑
j Gpjbqj that appears in ∂L/∂A is precisely the

(p, q) entry of the matrix product GB⊤. The transpose operator swaps the indices of B so that its first index
lines up with the second index of G:

(GB⊤)pq =
∑
j

GpjB
⊤
jq =

∑
j

Gpjbqj .

The same index–swapping idea explains A⊤ in ∂L/∂B = A⊤G.

For the 2× 2 case let the upstream gradient be

G =

[
g11 g12
g21 g22

]
.

Form the transpose of B and multiply:

B⊤ =

[
b11 b21
b12 b22

]
, GB⊤ =

[
g11b11 + g12b12 g11b21 + g12b22
g21b11 + g22b12 g21b21 + g22b22

]
.

Compare the (1, 2) entry to the manual derivative ∂L/∂a12 =
∑

j G1jb2j = g11b21 + g12b22, which matches
exactly. The transpose thus provides a structural shortcut: by swapping indices, it aligns the correct rows
and columns so that ordinary matrix multiplication performs all the required summations in one shot.

Gradient with respect to A Applying the chain rule

∂L

∂apq
=

∑
i,j

∂L

∂rij

∂rij
∂apq

=
∑
j

Gpjbqj .

Recognising the right–hand side as a row of G times a column of B⊤ leads to the compact matrix form

∂L

∂A
= GB⊤

with shape m× k matching A.

12

Gradient with respect to B An analogous argument yields

∂L

∂B
= A⊤G

with shape k × n matching B.

Simplified implementation (Python–like)

G: upstream gradient dL/dR (m x n)

A: left operand (m x k)

B: right operand (k x n)

dA = G @ B.T # (m x n) @ (n x k) -> (m x k)

dB = A.T @ G # (k x m) @ (m x n) -> (k x n)

This matches the logic found in matmul tensor’s backward closure in tensor.py, but omits runtime
checks for clarity.

4.13 ReLU

The Rectified Linear Unit (ReLU) is applied elementwise:

R = ReLU(X) = max(0, X).

Let G = ∂L/∂R be the upstream gradient with the same shape as X.

Local derivative
∂R

∂X
=

{
1 X > 0,

0 X ≤ 0.

Gradient rule Define the indicator tensor I = 1{X>0}. Then

∂L

∂X
= G⊙ I .

Simplified implementation

I = (X > 0).astype(X.dtype)

dX = G * I

This matches the behaviour of relu tensor in tensor.py.

4.14 Leaky ReLU

Leaky ReLU introduces a small slope α (0 < α ≪ 1) for negative inputs:

R = LReLU(X;α) =

{
X X > 0,

αX X ≤ 0.

Upstream gradient G again has the same shape as X.

Local derivative
∂R

∂X
=

{
1 X > 0,

α X ≤ 0.

13

Gradient rule Let I+ = 1{X>0} and I− = 1− I+. Then

∂L

∂X
= G⊙

(
I+ + αI−

)
.

Simplified implementation

I_pos = (X > 0).astype(X.dtype)

I_neg = 1 - I_pos

dX = G * (I_pos + alpha * I_neg)

The function leaky relu tensor in tensor.py follows the same pattern, defaulting to α = 0.01.

5 Loss Functions

Loss functions quantify how well a model’s predictions ŷ match the true target values y. During training the
network parameters are optimised to minimise the chosen loss. Because they are expressed solely in terms
of primitive tensor operations (addition, multiplication, power, logarithm etc.), defining a new loss in our
framework is no different from writing an ordinary forward pass.

5.1 Defining a new loss is just composing tensors

Let us recall that every call to a tensor operation immediately creates both

1. a new tensor that stores the numerical result, and

2. a corresponding operation node that links it to its parents in the computation graph.

Consequently a one-line Python expression such as

loss = ((y_true - y_pred) ** 2).mean()

instantiates four graph nodes (sub, pow, mean, and the final L) and three intermediate tensors. No additional
boiler-plate is required—the graph is built dynamically while the user writes idiomatic NumPy-like code.

5.2 Gradients via automatic differentiation

During the backward pass the library walks the graph in reverse order, propagating partial derivatives from
the loss back to each parameter according to

δT =
∑

k∈ out(T)

δk
∂Tk

∂T
,

where δT = ∂L/∂T and out(T) denotes all descendants that take T as input. Because every primitive
operation already knows its own local Jacobian, the global gradient emerges by repeated application of the
chain rule—exactly as described in Section 3.4.

5.3 Example: Mean–Squared Error (MSE)

For concreteness consider the Mean–Squared Error

LMSE =
1

n

n∑
i=1

(yi − ŷi)
2.

The forward pass can be written in three lines:

14

diff = y_true - y_pred

sq_err = diff ** 2

loss = sq_err.mean()

Below we depict the resulting computation graph.

y

ŷ

− d (·)2 s µ L

The gradient with respect to the prediction is recovered automatically:

∂L

∂ŷ
=

2

n
(ŷ − y),

which is exactly the hand-derived formula; the autodiff engine has taken care of the algebra.

5.4 Beyond MSE

Other popular losses—Mean Absolute Error, Binary Cross-Entropy, Hinge loss, etc.—are all definable with
the same three-step recipe:

1. Express the loss as a composition of primitive operations.

2. Execute the forward pass to build the dynamic graph.

3. Call backward() on the scalar loss tensor to obtain every required gradient.

Because the machinery is identical, we omit the individual DAGs for brevity; the interested reader is en-
couraged to draw them by substituting the corresponding operations (abs, log, max...) into the template
above.

6 Layer Implementations

Future sections derive gradients for operations. It is equally instructive to see how complete layers—the
building blocks of neural networks—can be assembled entirely from those primitives. This section provides a
high-level map that connects each layer in autograd/layers to the underlying tensor operations that power
it. Detailed mathematical derivations will follow in future revisions; for now we list the core ingredients.

• Design principles

– Each concrete layer inherits from BaseLayer which unifies parameter handling, training/eval mode
switching, and basic SGD.

– The forwardmethod composes primitive tensor operations (see the previous section) and therefore
obtains automatic gradients for free.

6.1 Dense (Fully Connected)

File: dense.py

• Parameters: weight matrix W ∈ Rdout×din and bias vector b ∈ Rdout . Both are Tensors set to
requires grad=True.

• Forward : Y = XW⊤ + b

– Matrix multiplication: matmul tensor

– Broadcasting addition: tensor add

• Xavier/Glorot initialisation sets W using numpy.random.uniform.

15

6.2 Activation Layers

• Common trait: they apply an element–wise non-linearity implemented as a single primitive tensor op.

ReLU File: activations.py

• Operation: Y = max(0, X) via relu tensor.

Sigmoid File: activations.py

• Operation: Y = σ(X) via sigmoid tensor.

Leaky ReLU File: activations.py

• Operation: Y =

{
X X > 0

αX X ≤ 0
via leaky relu tensor with slope α (default: α = 0.01).

6.3 Dropout

File: dropout.py

• Training mode: sample Bernoulli mask M ∼ Bernoulli(1− p).

• Forward: Y = 1
1−p X ⊙M using element-wise multiplication (tensor mul) and scalar scaling.

• Evaluation mode: identity map (Y = X).

6.4 Skip Connection (Residual)

File: skip connection.py

• Wraps an inner layer f and returns Y = f(X) +X.

• Uses tensor add to combine the original input with the wrapped layer’s output. Requires matching
shapes.

7 Loss Functions

Loss functions quantify how well a model’s predictions ŷ match the true target values y. During training the
network parameters are optimised to minimise the chosen loss. Because they are expressed solely in terms
of primitive tensor operations (addition, multiplication, power, logarithm etc.), defining a new loss in our
framework is no different from writing an ordinary forward pass.

7.1 Defining a new loss is just composing tensors

Let us recall that every call to a tensor operation immediately creates both

1. a new tensor that stores the numerical result, and

2. a corresponding operation node that links it to its parents in the computation graph.

Consequently a one-line Python expression such as

loss = ((y_true - y_pred) ** 2).mean()

instantiates four graph nodes (sub, pow, mean, and the final L) and three intermediate tensors. No additional
boiler-plate is required—the graph is built dynamically while the user writes idiomatic NumPy-like code.

16

7.2 Gradients via automatic differentiation

During the backward pass the library walks the graph in reverse order, propagating partial derivatives from
the loss back to each parameter according to

δT =
∑

k∈ out(T)

δk
∂Tk

∂T
,

where δT = ∂L/∂T and out(T) denotes all descendants that take T as input. Because every primitive
operation already knows its own local Jacobian, the global gradient emerges by repeated application of the
chain rule—exactly as described in Section 3.4.

7.3 Example: Mean–Squared Error (MSE)

For concreteness consider the Mean–Squared Error

LMSE =
1

n

n∑
i=1

(yi − ŷi)
2.

The forward pass can be written in three lines:

diff = y_true - y_pred

sq_err = diff ** 2

loss = sq_err.mean()

Below we depict the resulting computation graph.

y

ŷ

− d (·)2 s µ L

The gradient with respect to the prediction is recovered automatically:

∂L

∂ŷ
=

2

n
(ŷ − y),

which is exactly the hand-derived formula; the autodiff engine has taken care of the algebra.

7.4 Beyond MSE

Other popular losses—Mean Absolute Error, Binary Cross-Entropy, Hinge loss, etc.—are all definable with
the same three-step recipe:

1. Express the loss as a composition of primitive operations.

2. Execute the forward pass to build the dynamic graph.

3. Call backward() on the scalar loss tensor to obtain every required gradient.

Because the machinery is identical, we omit the individual DAGs for brevity; the interested reader is en-
couraged to draw them by substituting the corresponding operations (abs, log, max...) into the template
above.

17

	Introduction
	Prerequisites
	Computation Graphs
	What is a Computation Graph?
	Abstract Computation Graph and the Chain Rule
	Multiple Paths and Gradient Accumulation
	Dynamic Computation Graphs
	A simple example
	A more complex example
	An example with tensor re-use

	Gradient Derivations for Tensor Operations
	Addition & Subtraction
	Element–wise (Hadamard) Multiplication
	Sigmoid
	Scalar Multiplication
	Division
	Power
	Sum (Reduction)
	Mean (Reduction)
	Reshape
	Transpose
	Concatenation
	Matrix Multiplication
	ReLU
	Leaky ReLU

	Loss Functions
	Defining a new loss is just composing tensors
	Gradients via automatic differentiation
	Example: Mean–Squared Error (MSE)
	Beyond MSE

	Layer Implementations
	Dense (Fully Connected)
	Activation Layers
	Dropout
	Skip Connection (Residual)

	Loss Functions
	Defining a new loss is just composing tensors
	Gradients via automatic differentiation
	Example: Mean–Squared Error (MSE)
	Beyond MSE

